Amyloid beta-protein and lipid rafts: focused on biogenesis and catabolism.

نویسندگان

  • Wataru Araki
  • Akira Tamaoka
چکیده

Cerebral accumulation of amyloid β-protein (Aβ) is thought to play a key role in the molecular pathology of Alzheimer's disease (AD). Three secretases (β-, γ-, and α-secretase) are proteases that control the production of Aβ from amyloid precursor protein. Increasing evidence suggests that cholesterol-rich membrane microdomains termed 'lipid rafts' are involved in the biogenesis and accumulation of Aβ as well as Aβ-mediated neurotoxicity. γ-Secretase is enriched in lipid rafts, which are considered an important site for Aβ generation. Additionally, Aβ-degrading peptidases located in lipid rafts, such as neprilysin, appear to play a role in Aβ catabolism. This mini-review focuses on the roles of lipid rafts in the biogenesis and catabolism of Aβ, covering recent research on the relationship between lipid rafts and the three secretases or Aβ-degrading peptidases. Furthermore, the significance of lipid rafts in Aβ aggregation and neurotoxicity is briefly summarized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compartmentalization of β-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts

Recent epidemiological studies show a reduced prevalence of Alzheimer's disease (AD) in patients treated with inhibitors of cholesterol biosynthesis. Moreover, the cholesterol-transport protein, apolipoprotein E4, and elevated cholesterol are important risk factors for AD. Additionally, in vitro and in vivo studies show that intracellular cholesterol levels can modulate the processing of amyloi...

متن کامل

Open Access - and -Secretases and Lipid Rafts

The cerebral accumulation of -amyloid protein (A ) is thought to play a key role in the molecular pathology of Alzheimer’s disease (AD). Recent evidence indicates that both -secretase and -secretase, the membrane-associated proteases directly involved in the generation of A from its precursor, amyloid precursor protein (APP), are localized to cholesterol-rich membrane microdomains termed lipid ...

متن کامل

Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts

Formation of senile plaques containing the beta-amyloid peptide (A beta) derived from the amyloid precursor protein (APP) is an invariant feature of Alzheimer's disease (AD). APP is cleaved either by beta-secretase or by alpha-secretase to initiate amyloidogenic (release of A beta) or nonamyloidogenic processing of APP, respectively. A key to understanding AD is to unravel how access of these e...

متن کامل

Lipid Rafts and Alzheimer’s Disease: Protein-Lipid Interactions and Perturbation of Signaling

Lipid rafts are membrane domains, more ordered than the bulk membrane and enriched in cholesterol and sphingolipids. They represent a platform for protein-lipid and protein-protein interactions and for cellular signaling events. In addition to their normal functions, including membrane trafficking, ligand binding (including viruses), axonal development and maintenance of synaptic integrity, raf...

متن کامل

Low-density lipoprotein receptor-related protein promotes amyloid precursor protein trafficking to lipid rafts in the endocytic pathway.

The major defining pathological hallmark of Alzheimer's disease (AD) is the accumulation of amyloid beta protein (Abeta), a small peptide derived from beta- and gamma-secretase cleavages of the amyloid precursor protein (APP). Recent studies have shown that beta- and gamma-secretase activities of BACE1 and presenilin, respectively, are concentrated in intracellular lipid raft microdomains. Howe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in bioscience

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2015